GENEVIZ: a Visual Tool for the
Construction and Blockchain-based Validation
of SFC Packages

Muriel F. Franco!, Martin J. J. Bucher!, Eder J. Scheid!,
Lisandro Z. Granville?, and Burkhard Stiller!

! Communication Systems Group CSG, Department of Informatics IfI,
University of Ziirich UZH
Binzmiihlestrasse 14, CH-8050 Ziirich, Switzerland
2 Computer Networks Group, Institute of Informatics INF,
Federal University of Rio Grande do Sul UFRGS
Av. Bento Gongalves, 9500, Porto Alegre, Brazil
{franco, scheid, stiller}@ifi.uzh.ch, martin.bucher2@uzh.ch,
granville@inf.ufrgs.br

Abstract. Network Functions Virtualization (NFV) decouples the net-
work package performed by network functions from dedicated hardware
appliance by running Virtual Network Functions (VNF) on commercial
off-the-shelf hardware. Network operators can create customized network
services by chaining multiple VNFs, defining a so-called Service Function
Chaining (SFC). Because NFV became technically mature recently, the
building of such SFCs still needs in-depth knowledge about NFV tech-
nology and its descriptors. Furthermore, there is a lack of tools that help
to simplify the creation of SFCs. This paper, introduces GENEVIZ, a
tool that provides a user-friendly interface for the creation of new SFCs
as well as for importing and adjusting acquired SFCs (e.g., from mar-
ketplaces of VNFs), in order to create new SFCs based on existing ones.
Therefore, this work addresses as well data integrity and provides the
functionality to store and validate SFCs through the use of blockchains.
Three case studies are presented to provide evidence of the technical
feasibility of the solution proposed.

Keywords: Network Functions Virtualization - Blockchain - Service
Functions Chaining - Virtual Network Functions-as-a-Service.

1 Introduction

The paradigm of Network Functions Virtualization (NFV) has gathered signif-
icant attention over the last years both from academia and industry [11]. NFV
decouples packet processing from dedicated hardware middleboxes and handles it
within Virtual Network Functions (VNF) that run on off-the-shelf programmable
hardware [10]. NFV offers several benefits, including simplified network opera-
tions, a potential of speeding up service delivery, and significant reductions in Op-
erational Expenditures (OPEX) and Capital Expenditures (CAPEX) [8]. Also,

2 Franco et al.

NFV allows network operators to create customized network services by chain-
ing together multiple VNFs (e.g., firewalls, load balancers, and DHCP servers).
Such network services can provide, for example, different levels of protection,
performance, and connectivity for end-users, while the NFV-based virtualiza-
tion reduces costs and increase the flexibility of the network (e.g., accelerated
time-to-market and dynamic resources allocation). Such aggregation of differ-
ent VNF's building up a network service is represented as a Service Function
Chaining (SFC).

As of today, a network operator must have in-depth knowledge about the
NFV technology and its corresponding descriptors in order to create an SFC,
which can be deployed on an NFV-enabled infrastructure to provide novel net-
work services. In NFV an SFC is represented as a forwarding graph of VNF's
and should take into account different descriptors representing the configura-
tions and dependencies of each VNF that compound an SFC [5], such as the
VNF Descriptor (VNFD) and the Network Service Descriptor (NSD). The task
of dealing with each one of these descriptors is not trivial and requires efforts
to configure each one of them manually. The process of constructing such an
SFC is not intuitive, many manual steps are necessary for descriptors handling
and editing, and the creation can be quite error-prone. This might even lead to
a negative impact on a broader adoption of the NFV technology. Furthermore,
by considering the prospective market growth of VNF-as-a-Service (VNFaaS) [2]
and its potential to simplify the way how end-users obtain services in general,
the lack of intuitive solutions has to be addressed when considering the potential
of SFCs for end-users with no expertise in the NFV technology.

In this context, information visualization techniques are considered to be a
viable tool to help network administrators understand the behavior of the man-
aged network or service, in a faster and easier way [7]. Even though the analysis
of such data can be almost fully automated, human interpretation plays a crucial
role in decision-making process for network and service management. Especially
in NFV environments an enormous amount of data is available and the un-
derstanding of it represents a challenging task itself [6]. Although past work
exploited visualization techniques to simplify the identification of problems in
SECs, there is still a lack of research addressing the simplification of SFC con-
struction. The visualizations can provide several benefits in NFV environments,
such as (a) an intuitive way to select VNFs that will compound the forward-
ing graph and (b) a quick configuration of the SFC through its corresponding
VNFs. Thus, the visual interface designed here also provides opportunities to
reuse already available SFCs and check their integrity relying on the blockchains
[1], making it easier to build a new SFC based on an existing one and also
contributing to the expansion of the NFV business models (e.g., marketplaces
implementing VNFaaS approaches).

This paper introduces GENEVIZ, a visual solution allowing the construc-
tion of a new SFC Package based on multiple VNF Packages’ information (e.g.,
descriptors of each VNF) and other inputs defined through interactive visualiza-
tions (e.g., minimum resources and dependencies to run the service). The tool

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 3

proposed provides an easy way to create new SFCs as well as to configure prop-
erties of VNFs that will compound an SFC. Also, GENEVIZ is able to store the
hash of the content of such an SFC package on a public blockchain to enable the
verification of their integrity and origin (i.e., the developer information) of an
already existing SFC configuration before it will be deployed inside the network.

The remainder of this paper is structured as follows. Section 2 reviews related
work. Section 3 introduces the GENEVIZ’s general architecture and prototype.
An evaluation based on case studies is conducted together with a discussion in
Section 4 in order to provide evidence of the effectiveness of GENEVIZ. Section
5 concludes this paper and outlines future work.

2 Related Work

The management of networks and services demands a multitude of methods,
activities, procedures, and tools, with the goal to ensure a proper functioning of
systems observed. Such tools enable a network administrator to retrieve manage-
ment information from corresponding devices, analyze the obtained data, and
take decisions to optimize or repair services. Within this workflow, visualiza-
tions can provide a way to represent a large amount of data in a way perceivable
much faster by the human user than via raw and often abstract data. In such a
direction, the information visualization allows to perform cognitive work more
efficiently and hence in less time [3].

The field of information visualization applied to NFV environments [7] dis-
cusses the current applications of visualization and how it should be explored in
different topics, such as NFV and Software-defined Networks (SDN). [15] exam-
ined specifically the process of configuring virtualized networks, making it clear
that no tools existed to assist the configuration, deployment, and testing of virtu-
alized networks by 2016. Specifically, they found no single graphical tool for the
creation of a network map directly from a configuration as given by the various
descriptors in an SFC configuration. [6] presented the VISION platform, which
provides interactive and selective visualizations to assist NFV management. VI-
SION not only helps network operators to identify and alleviate problems in
the context of VNFs, but also provides a complete forwarding graph visualiza-
tion. Although it provides useful information on incorrect VNF placements or
performance problems using visualizations, it only focuses on services already
deployed and monitoring systems previously configured, thus not addressing the
creation of new network services through the help of visualization tools.

In the context of SFC visualization, [13] introduced SFCPerf, an automatic
performance evaluation tool for SFCs. SFCPerf ensures the repeatability of the
performance measurements by defining a testing workflow; thus, allowing the
performance comparison among different SFC configurations based on the same
test. The visualization module included in the tool provides a user-readable
interface to visualize throughput, round-trip time, and request rate of a given
SFC. Based on their scenarios, they discovered that the main impact factors
on the overall performance of an SFC were (i) the number of physical link hops

4 Franco et al.

between different nodes, and (7i) the competition for resources on shared physical
nodes. These visualizations can be useful, especially during the construction
phase of an SFC, while considering different topologies and NFV platforms,
ensuring that the performance meets the desired requirements. [4] presented the
SEC' Path Tracer, a troubleshooting tool for SFC environments that enables
the visualization of the trace of network packets in SFC domains. This trace
generation is accomplished by mirroring probe packets as they traverse through
the chain. Hence, SFC Path Tracer can be useful for the identification of problems
within an SFC configuration, as it pinpoints the origin of a possible problem by
providing packet trace information. The authors also argue that the tool can be
expanded in the near future to a more comprehensive measurement tool.

Although different solutions as discussed above address different aspects re-
lated to SFC (e.g., placement, resources allocation, and performance), none of
them is focusing on the simplification of the process of an SFC construction by
providing intuitive tools (e.g., based on information visualization) for end-users,
who construct SFCs and configure their acquired VNFs before the start of the
deployment.

3 GENEVIZ

This section introduces GENEVIZ (Generation, Validation, and Visualization of
SFC Packages) and its conceptual architecture combined with relevant details
of the prototype’s implementation. GENEVIZ architecture is composed of sepa-
rated, but interconnected components, providing flexibility to allow replacement
of existing modules or adding new modules without affecting remaining compo-
nents.

White blocks with solid borders of Figure 1 represent internal components
and grey blocks with dashed borders represent external components (i.e., decen-
tralized). GENEVIZ is divided into three main layers: User Layer, Data Layer,
and Blockchain Layer, respectively. Although the Blockchain Layer is not part
of GENEVIZ itself, it is an integral part of the solution proposed, since it plays
a crucial role for validate and trust in SFCs. GENEVIZ (i) simplifies the process
of creating new network services (i.e., SFCs) in general, and (i) ensures data
integrity of previously created services by validating them using blockchain.

An end-user accesses the tool through the User Interface, which provides
interactive visualizations depending on data provided by the Visualization Man-
ager. An integral part of this data is given by the Template Catalog, which
retrieves templates from the Templates Collector. The Collector retrieves data
from different sources (e.g., marketplaces, independent catalogs, or a manual
upload from the local machine). While creating an SFC through the Service
Constructor visualization, VNF Templates from the Template Catalog are trans-
mitted through the Visualization Manager to the Management API and stored
through the Package Handler on the Packages Database. When an SFC Package
is generated, the SFC' Package Generator creates a package based on the infor-
mation provided (e.g., the list of included VINF's containing their descriptors, the

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 5

GENEVIZ Platform

User Layer Data Layer
Web Application
Package Parser
Visualizations

Service VNFD SFC Placement I ——
Constructor Editor Validator | ®**® | Recommender _—
j Package Handler -

Packages

i

le—>{ SFC Package Generator

Management API

z L' i
1,

Template
Sources

Template (_,_>

Catalog

SFC Package
Manager

[€=—> SFC Package Validator

Template Collector
Visualization Manager

—>|

! Blockchain Layer

. H

: —rn=
Manual Templates

Upload

Fig.1. GENEVIZ Architecture.

forwarding graph, and properties of the NSD). Besides, the end-user creating the
package are able to select the option to store the hash of the SFC Package in the
blockchain. If select and configure the blockchain information (e.g., end-user’s
address and private key), the hash of such an SFC Package will be available on
blockchain. After the transaction be sent to the blockchain, the transaction ID
is stored in a descriptor called geneviz.json, which is included inside of the SFC
Package, thus providing useful information to validate the hash during further
validation by others.

The validation of the SFC Packages relies on the blockchain to verify the
integrity of files representing the SFC Package. Blockchain was initially devel-
oped as a distributed ledger to be the backbone of the Bitcoin cryptocurrency
[12]. Blockchain is an ordered list of blocks that uses cryptographic hashes to
chain and identify the blocks. Each block has a dependency with the others on
the chain, thus, if one wants to modify a data on the blockchain, he/she must
change every block until the beginning of the chain. Because of the cryptography
scheme implemented, this task is arduous and not viable in terms of computa-
tional resources. Based on that, blockchain ensures that one data stored cannot
be removed, while the address of the account that stored the data and the data
itself can be publicly available as well. Thus, among the benefits provided by
blockchains, the trustworthy, decentralized, and immutable records can be high-
lighted as crucial for GENEVIZ to validate SFCs without the need to rely on
any third-party (e.g., marketplaces and public repositories for VNFSs).

To enable the usage of the blockchain, SFC' Package Validator communicates
via the SFC Package Manager with the Blockchain API. The API retrieves the

6 Franco et al.

corresponding hash from the blockchain by using the transaction ID provided by
the SFC Package. Theoretically, any blockchain (e.g., Ethereum [17] and Bitcoin
[12]) can be used for this validation. Only the hash of the SFC Package is required
and can be stored, for example, using Smart Contracts or as a transaction in the
blockchain. It also can be integrated with a blockchain-agnostic API, such as the
one presented in [14]. Therefore, by using a public blockchain for the storage of
the hashes of the SFC Packages, GENEVIZ allows for a check of the integrity
and origin of that SFC Package. GENEVIZ implements Ethereum blockchain
by default.

During the validation process, the SFC Package Validator compares the hash
of the SFC Package, together with the given transaction key, with the hash stored
on the blockchain for this transaction key, GENEVIZ can check if the package
content matches the initial one from the creator of the SFC Package. Three
possible states are defined: (i) Valid meaning that the hash of a SFC Package
matches the one stored on the blockchain for the given transaction key, (i)
Invalid, when the SFC Package was modified and the hash of the downloaded
package does not match with the one stored on the blockchain for the given
transaction key; and (%ii) Unknown represents that the SFC Package’s hash was
not stored in the blockchain during its creation because special reasons (e.g.,
the developer decided to not use the blockchain validation upon constructing
the SFC), thus, there is no transaction key or hash available for verification.
In this case, GENEVIZ cannot make any statement about the integrity of the
content (cf. Sec. 4.3 below).

3.1 Prototype and Implementation

The GENEVIZ prototype was implemented using JavaScript on the User Layer
and Python 3.7.0 together with Flask 1.0.2 on the Data Layer. For the Blockchain
Layer, Ethereum blockchain was used, supported by Ganache [16] its latest ver-
sion as the development environment. For the SFC Package, the VNFD following
the European Telecommunications Standards Institute (ETSI) standards and
the codes to execute each VNF was considered. The prototype implemented
considering those components previously defined, serving as a Proof-of-Concept
(PoC) for the GENEVIZ’s architecture. The prototype’s source-code and its
documentation are publicly available online [9].

The left side of the GENEVIZ interface (cf. Figure 2) offers a menu, allowing
the user to manually upload zipped VNF and SFC Packages by using the drop-
zone (depicted with the dashed border). By clicking on the respective buttons
for VNFs and SFCs, the user can switch between these two catalogs. Only ZIP
files containing VNF-related files are allowed to be uploaded. At the bottom of
the menu, the blue button allows for the generation of an SFC Package based on
the SFC constructed. This button only appears if the constructed SFC is valid.
Hence, the button is not visible at the initial start of the application, as an empty
SFC is considered to be invalid. The User Interface shows an alert on the top
right corner if any error message has to be passed to the user. This can especially
be helpful during the graph construction or import of new packages, since there

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 7

is feedback from the application if an action fails or is not allowed. Examples
include a wrong format of the VNF Template (e.g., the Package Parser cannot
find the VNFD) or the attempt to create a loop during the forwarding graph
construction.

GENEVIZ

Generation and Visualization of
SFC Packages

VNFS (2) SFCS (8)

firewall-1.0-uzh

Add to SFC | | Remove

dpi-1.0-uzh

Add to SFC | | Remove

Upload a VNF Package by dropping
the file directly here or by clicking
here to select a file (only zip files

allowed)

&, Generate SFC Package

+ H [4 show VNFD Properties © Clear Graph

Fig. 2. GENEVIZ Dashboard.

GENEVIZ provides also feedback during the construction of the SFC (i.e.,
chaining recommendation). When a new edge is being placed between two nodes
on the graph plane, the edge color is defined based on the two properties tar-
get_recommendation and target_caution inside the VNFD of the source VNF.
Such properties are an extension provided by GENEVIZ for the ETSI VNFD
standard. These properties can be defined by the developer of the VNF inside
of the respective VNFD. For example, dependencies of VNF's can be listed (e.g.,
ensure that two complementary VNFs will be chained) and suggestions for per-
formances improvement (e.g., avoid the chaining of conflicting VNFs) can be
described. Based on this information, GENEVIZ highlights wrong connections
or possible bottlenecks during the SFC construction. Edges can be described as
(a) green dot for a recommended target VNF, (b) red dot for not recommended
target VNF, and (¢) blue/white for neutral targets. The latter is especially im-
portant, since a VNF does not hold the entire list of all possible VNFs as targets
in their properties, leaving the statement on the chaining recommendation neu-
tral.

The structure of an SFC Package generated and handled by the GENEVIZ
prototype is described as a sfec.zip file, which contains one or more VNF Packages.
Each VNF composing the SFC has a separate folder for its respective content
(e.g., descriptors and source-code). For an SFC Package with multiple VNFs from

8 Franco et al.

the same template (i.e., reuse of VNFs with different configurations), multiple
VNFDs with different IDs will be available in the same Descriptors folder of
the respective VNF'. In addition, the sfc.zip file has a file named nsd.json, which
represents the Network Service Descriptor (NSD) of the SFC.

Also, the sfc.zip file contains the geneviz.json, which is a GENEVIZ descrip-
tor containing two properties, namely tzHash and address. The transaction hash
property tzHash is retrieved from the blockchain itself after the hash is stored
on the blockchain, and is known as the transaction ID of the transaction for the
Ethereum blockchain. The address is given by the user itself when the gener-
ation of the package is requested. The geneviz.json is therefore needed for the
validation of an SFC Package as it contains the transaction key necessary for
the lookup of the data properties for this transaction key. If the data property
retrieved from the transaction matches with the computed hash from the con-
tent of the sfc.zip file, the package is seen as Valid. Does the hash found on the
blockchain for the given tzHash not match with the computed hash from the
content of the sfc.zip file, the package is seen as Invalid. If both the txHash and
the address properties are empty strings, GENEVIZ has not stored any hash
on the blockchain for this SFC Package and thus the data integrity of the SFC
Package is presented as Unknown.

4 Evaluations and Discussion

In order to validate key features and the technical feasibility of GENEVIZ, three
case studies on: (i) the process of the construction of SFCs, outlining benefits of
the visualization to simplify the process of SFC construction, (i) the generation
of an SFC package, which means the merging of different VNF packages and
configurations defined in previous steps. Also, the storage of the SFC package
on the blockchain is shown, via an (i) import of an existent SFC package
(e.g., available on online marketplaces or public repositories) and its validation
of integrity and origin using the hash stored in the Ethereum blockchain. In
addition, a discussion is provided to highlight the main benefits and limitations
of the presented solution.

4.1 Case Study #1 - Construction of an SFC

Case study #1 considers a user with the specific demand to create a new network
service, which shall be deployed in an NFV environment. Thus, the user bought
three different VNF Packages from an external source (e.g., from a marketplace),
which are needed to create the SFC. The VNFs acquired implement a Deep
Packet Inspection (DPI), a Firewall, and a Load Balancer (LB), respectively.
In a first step, the three VNFs are imported via the manual upload of the
GENEVIZ Web application. After uploading them, all VNF' Packages appear
in the left menu as VNF Templates, since they could be added multiple times
for the same SFC. By selecting the blue-bordered “Add to SFC” button for each
VNF Template once, each template is added as a VNF Package to the SFC and

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 9

appears as a node within the graph on the right side of the Web application.
Next, the user constructs a connection between two VNF's selecting the DPI and
Firewall. This leads to the creation of an edge between the DPI and the Firewall
node. By connecting the Firewall with the LB node with the same approach, the
second edge is created (cf. Figure 3).

This first draft of the SFC can be seen as a misconfiguration, although it
would not be wrong to create such an SFC. The current construction also shows
that the user is not experienced with the creation of SFCs, since a red dot on
the edge between the DPI and the Firewall node appears. This red dot is part
of the chaining recommendation of the GENEVIZ’s Prototype and indicates
that the connection is not recommended for an SFC. In this case, this red dot
highlights that a DPI allocated before a Firewall can generate a bottleneck in
the service chaining. Hence, based on such an alert, the user changes the current
construction and swaps the DPI and the Firewall node by deleting the two
edges created, then swapping the position of the DPI and the Firewall node,
and finally connecting the three nodes again by creating two new edges. As a
result, the first edge will see a green dot, indicating a recommended connection.
This recommendation is based on the information being part of the VNFDs,
determining an additional as an extension of GENEVIZ.

GENEVIZ

Generation and Visualization of
SFC Packages

VNFS (3) SFCS (8)

firewall-1.0-uzh

Add to SFC | | Remove

® Firewall Load Balancer

Ib-1.0-uzh

(‘Addto sFc | [Remove

dpi-1.0-uzh

Add to SFC Remove

Upload a VNF Package by dropping

&, Generate SFC Package

+ 8 (4 show VNFD Properties O Clear Graph

Fig. 3. SFC construction user interface for case study #1.

4.2 Case Study #2 - Generation of an SFC Package

The case study #2 evaluates the generation of an SFC Package and assumes
a correct construction of the forwarding graph within the graph as constructed

10 Franco et al.

within case study #1. If such a constructed SFC is valid, a blue button with the
label “Generate SFC Package” appears at the bottom left corner. By selecting
on that a popup window appears, requesting the user to define the name, vendor,
and version for SFC Package. If the end-user decided to store the hash of the
SFC Package on the Ethereum blockchain for further validations, additional
information are requested (cf. Figure 4). For this, the end-user needs to provide
both the address of an Ethereum account as well as the private key for this
account in order to sign the transaction properly.

As a next step, the user selects the blue-bordered “Download” button, which
generates the SFC Package and stores the hash of the package on the Ethereum
blockchain. The GENEVIZ will automatically trigger the download of a ZIP
file, containing both an sfc.zip file for the deployment of the SFC as well as a
geneviz.json file to be used for further validations of the SFC Package. The

Generate SFC Package

Name of SFC Package

GENEVIZ Evaluation

Vendor

UzZH

Version

10

Store Hash of SFC Package on the
Ethereum Blockchain for later Verification

Address of Ethereum Account

0x1dFb65B436194C0cc195084CF7a25Eaf/

Private Key of Ethereum Account

Download SFC Cancel

Fig. 4. SFC Package generation including its storage on the Ethereum blockchain.

4.3 Case Study #3 - Blockchain-based Validation and Import of an
SFC Package

For case study #3 a different user is being considered. This second user has down-
loaded three SFC Packages before (e.g., from a marketplace or a public catalog
of VNFs), without any information on their integrity and origin (i.e., develop-
ers). As these packages contain different folders and nested files representing
each VNF that compose the service, for which a check of their content may be
time-consuming, the user leaves the validation of these package up to GENEVIZ.
Here the user refers to use the SFC Package named sfc-package-evaluation, but

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 11

he also considers the sfc-package-other and the sfc-package-other-2 packages in
case the first one turns out to be invalid.

In the first step, the user selects the “SFCS” button in the menu on the left
side to switch to the SFC section. This section allows for the manual upload
of SFC Packages through the browser as it is performed for the upload of VNF
Packages. The SFC Packages uploaded appear on the SFC list as SFC Templates
in a similar way uploaded VNF Packages are handled as VNF Templates. The
validation of the packages uploaded is triggered automatically and the response
depends on the current block time of the blockchain. For the package named
sfe-package-other-2 no statement on its data integrity can be made, since no
information for the retrieval on the blockchain is provided, hence, it is marked
as Unknown. The second package sfc-package-other appears to be marked as
Inwvalid, which means the content of this package was modified. The third package
sfc-package-evaluation is the package created within case study #2. Since the
hash of this package was stored in the Ethereum blockchain during the generation
of the package by the first user and the transaction ID is part of the SFC Package
downloaded, GENEVIZ finds a hash for the given transaction ID, which matches
with the hash of the content from the SFC Package uploaded. Hence, GENEVIZ
marks the SFC Package uploaded as Valid, and shows the green “Valid” label,
as shown in Figure 5 within the white boxes of the SFC' Templates.

sfc-package-other-2 sfc-package-other sfc-package-evaluation
import | [Remove | invalid G | ((import | [Remove | i - valid SFC | [Import | Remove

Fig. 5. Blockchain-based validation of SFCs.

For this third SFC Package, an acceptable level of trust was established, thus,
the user decides to import this SFC Package as a new SFC into GENEVIZ in
order to adjust VNFD properties of the VNFs involved, since they fit his/her
demands. By selecting on the blue-bordered “Import” button on the left menu
an alert appears, warning the user that the currently drafted SFC will be cleared
and replaced by the new SFC. This is adequate for the user, since the drafted
SFC previously is not relevant anymore. Now, the SFC will be imported and,
if the SFC Package can be extracted, the visualization will be constructed to
show the corresponding graph. This is considered helpful for the user, since the
forwarding graph is now directly visible and can also be modified if needed. In
turn, the user decides to open the VNFD Editor for the DPI, which lies between
the Firewall and the LB. By selecting on the “Show VNFD Properties” at the
bottom of the user interface (c¢f. Figure 3), a popup window appears, displaying
current VNFD properties of the DPI. The user decides to change the memory
size to “8 GB” and the number of CPUs to “2” to fulfill his/her demands for the
new network service. After applying these changes, the new VNFD properties

12 Franco et al.

are directly updated. Finally, the user selects the option to generate the SFC
Package, forcing the generation and download of the adjusted SFC Package
based on the SFC Package created by the first user. Finally, the customized SFC
Package can be used to be deployed as a new network service.

4.4 Discussion

These three case studies investigate and evaluate different set-ups, , while ap-
plying GENEVIZ. Both, the construction of a new network service based on
selected VNF Packages as well as the adjustment of properties of a certain VNF
being part of the SFC, simplify the process for the user compared to existing
support solutions. The graphical user interface for the service construction and
the chaining recommendation address the critical issue of VNF chaining, helping
the user to draft suitable SFCs. Furthermore, by storing the hash of the content
of the newly created package on the blockchain, the verification of the package’s
originality can be performed by any user through GENEVIZ as well. All tasks
can be performed separately, consuming an unnecessary manual effort for users
being inexperienced in the NFV market. The unified thus simplified approach
at one single place is achieved by the GENEVIZ.

Since this current evaluation is based on case studies only, quantitative evi-
dence on the performance of GENEVIZ in terms of intuitiveness and simplifica-
tion to create SFCs will be performed in future steps. In this sense, a usability
evaluation with real users is planned to validate the benefits of GENEVIZ and
provide quantitative details about the effectiveness, while these evaluations will
be based on System Usability Scale (SUS) questionnaires. Also, by constructing
SFCs through GENEVIZ, specific quantitative gains can be articulated through
measurements in a real-world deployment.

The application of a blockchain ensures data integrity of a previously created
SFC Package. The block time is assumed to be within in a reasonable amount
of time for the end-user, which is not always guaranteed for certain blockchains
(e.g., Ethereum may show block time peaks with up to 30 seconds). Although
the integrity of content can be guaranteed through the hash verification, the
package can already contain malicious code at the moment of the creation of
the new package or during the creation of the VNF Package, being part of the
SFC Package downloaded. Hence, GENEVIZ provides evidence for the end-users
trust in a download package from the Internet, since the author and the content
can be verified by using the information available in the blockchain.

5 Summary and Future Work

As NFV becomes technically more mature and its infrastructure widely adopted,
the demand for specific network services based on the chaining of different vir-
tualized network functions will increase in the years to come. Thus, this paper
introduced GENEVIZ, a tool for the generation, validation, and visualization of
SFC Packages. The graphical user interface proposed leads to a more intuitive

GENEVIZ: Generation, Validation, and Visualization of SFC Packages 13

and easier construction of new network services. GENEVIZ potentially can also
lead to fewer mistakes during the creation of new or the adjustment of existing
services, as there are fewer steps required to be taken to generate an SFC Pack-
age. Thus, visualizations had been proposed within a single Web application to
deal with (i) the construction of an SFC by chaining different VNFs through a
single, directed, and acyclic graph, (i) the adjustment of VNFD properties of
VNFs being part of the SFC, (7i4) supporting the user to create better SFCs by
providing a chaining recommender, and (iv) the ability to validate, supported
by blockchains, a previously created SFC to check its integrity and origin.

GENEVIZ runs as a Web-based application, which can be deployed on a
local machine, hence allowing end-users to create and adjust SFC Packages lo-
cally. Although GENEVIZ provides the possibility to validate data integrity
of the content of a package by using blockchains trust in the individual VNF
Packages offered by third-parties is still necessary. All visualizations provided
by the solution proposed can foster both the growth of the NFV market and
business models introduced by marketplaces for VNF-as-a-Service (VNFaaS).
Thus, GENEVIZ shows the potential to support not only experienced network
operators, but also end-users acquiring VNFs from marketplaces. Therefore, a
possible positive effect on a broader adoption of NFV technology may become
possible.

As future work, existing visualizations can be expanded in order to support
different recommendations for the chaining of VNF's inside the service function
chaining by using, for example, the affinity between pairs of VNFs. Also, the
VNFD Editor can be made configurable to support the editing of additional
properties from the VNF Descriptor. Since input fields in the popup window
map directly match the properties of a VNFD, GENEVIZ can maintain these
inputs, too. SFCs created can be offered to other users through a blockchain-
based marketplace for SFCs. Finally, the validation of SFCs can be improved not
only to ensure data integrity, but also to increase the level of trust for an SFC
Package from an unknown source by scanning the content for malicious content.
This can be performed during the construction of an SFC, while VNF Packages
are imported, or during the import of an existing SFC Package.

References

1. T. Aste, P. Tasca, T. Di Matteo: Blockchain Technologies: The Foreseeable Impact
on Society and Industry. In: IEEE Computer. Vol. 50, September 2017, pp. 18-28.

2. L. Bondan, M. F. Franco, L. Marcuzzo, G. Venancio, R. L. Santos, R. J. Pfitscher,
E. J. Scheid, B. Stiller, F. De Turck, E. P. Duarte, A. E. Schaeffer-Filho, C. R. P.
d. Santos, L. Z. Granville: FENDE: Marketplace-Based Distribution, Execution,
and Life Cycle Management of VNF's. In: IEEE Communications Magazine. Vol. 57,
January 2019, pp. 13-19.

3. C. Ware: Information Visualization: Perception for Design; 3rd Edition. Elsevier,
June 2012, pp. 1-536.

4. R. A. Eichelberger, T. Ferreto, S. Tandel, P. A. Duarte: SFC Path Tracer: A
Troubleshooting Tool for Service Function Chaining. In: IFIP/IEEE Symposium

14

10.

11.

12.

13.

14.

15.

16.

17.

Franco et al.

on Integrated Network and Service Management (IM 2017). Lisbon, Portugal, May
2017, pp. 568-571.

ETSI GS NFV-MAN: Network Functions Virtualisation (NFV); Management and
Orchestration, December 2014

M. F. Franco, R. L. d. Santos, A. Schaeffer-Filho, L. Z. Granville: VISION — In-
teractive and Selective Visualization for Management of NFV-Enabled Networks.
In: IEEE 30th International Conference on Advanced Information Networking and
Applications (AINA 2016). Crans-Montana, Switzerland, March 2016, pp. 274-281.
V. T. Guimares, C. M. D. S. Freitas, R. Sadre, L. M. R. Tarouco, L. Z. Granville:
A Survey on Information Visualization for Network and Service Management. In:
IEEE Communications Surveys Tutorials. Vol. 18, July 2015, pp. 285-323.

B. Han, V. Gopalakrishnan, L. Ji, S. Lee: Network Function Virtualization: Chal-
lenges and Opportunities for Innovations. In: IEEE Communications Magazine.
Vol. 53, February 2015, pp. 90-97.

M. Bucher, M. Franco, E. Scheid: GENEVIZ Prototype - Source Code.
https://gitlab.ifi.uzh.ch/franco/geneviz, last visit May 2019.

M. Chiosi and D. Clarke and P. Willis and A. Reid and J. Fegers and M. Bugen-
hagen and W. Khan and M. Fargano and C. Cui and H. Deng: Network functions
virtualisation: An Introduction, Benefits, Enablers, Challenges and Call for Action.
In: SDN and OpenFlow World Congress. Vol. 48. Diisseldorf, Germany, October
2012, pp. 1-16.

R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, R. Boutaba: Net-
work Function Virtualization: State-of-the-Art and Research Challenges. In: IEEE
Communications Surveys Tutorials. Vol. 18, September 2016, pp. 236—262.

S. Nakamoto: Bitcoin: A Peer-to-Peer Electronic Cash System, 2009,
https://bitcoin.org/bitcoin.pdf last visit June 2019.

I. J. Sanz, D. M. F. Mattos, O. C. M. B. Duarte: SFCPerf: An Automatic Per-
formance Evaluation Framework for Service Function Chaining. In: IEEE/IFIP
Network Operations and Management Symposium (NOMS 2018). Taipei, Taiwan,
April 2018, pp. 1-9.

E. Scheid, B. Rodrigues, B. Stiller: Toward a Policy-based Blockchain Agnostic
Framework. In: IFIP/IEEE Symposium on Integrated Network and Service Man-
agement (IM 2019). Washington, DC, USA, April 2019, pp. 609-613.

L. R. Soles, T. Reichherzer, D. H. Snider: A Tool Set for Managing Virtual Network
Configurations. In: IEEE SoutheastCon (SoutheastCon 2016). Norfolk, UK, March
2016, pp. 1-4.

Truffle Blockchain Group: Ganache Website. https://truffleframework.com/ganache,
last visit May 2019.

G. Wood: Ethereum: A Secure Decentralised Generalised Transaction Ledger. In:
Ethereum Project Yellow Paper. Vol. 151, January 2014, pp. 1-32.

